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We show that the standard error of the Diffusion Monte Carlo estimators varies (for small 
values of r) with T-“‘, where r is the value of the time step. This has serious implication for 
the design and optimization of specific simulations. The statistical variation is analyzed in 
terms of three components which relate to guiding function rjr, branching, and serial 
correlation of consecurive iterations. The behavior of these is investigated empirically as a 
function of T. An appropriate scheme (applicable to any simulation calculation with serially 
correlated data) is proposed to facilitate reliable estimation of the statistical error. 0 1988 

Academic Press. Inc. 

This paper concerns the diffusion Monte Carlo (DMC) method [14] for 
obtaining an estimate of the exact ground-state energy of a molecule. Several 
calculations have been reported with progressively improved accuracy. However, 
the results for some molecules exhibit a relatively large statistical error; it has been 
estimated that for LiH results to be competitive with current ab initio methods 
could require a lo-fold reduction of the error [S]. The long term objective of our 
continuing research is to design a vastly more efficient and competitive procedure. 

In this paper we analyze the behavior of the statistical error as a function of time 
step T. Although it is known (by inappropriately assuming a Markovian series of 
observations) that the variance of a serially correlated variable in Metropolis 
sampling varies as z-r [6] suggesting a similar result for DMC sampling, a more 
general and detailed analysis has been lacking. The results of our analysis have 
serious implications for the design of efficient simulations as well as for isolating the 
essential ingredients for efficient guiding functions. (Optimization of DMC is a 
topic which we consider in another publication [7],) We also address the problem 
of efficiently estimating the statistical error, without recourse to the commonly 
used, yet inefficient technique of creating huge blocks of data which may be treated 
as statistically independent observations. 

We assume familiarity with the DMC technique for finding the ground-state 
eigenvalue E0 of the Schrodinger equation (expressed in atomic units) 

- ~~*A, + f’(RMo = &h, (1) 
by converting it to 

581/74/l-9 

[-iv’ + V .F(R) + E,(R)1 f(R) = .&d(R), (2) 
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where V operates on both functions to its right. The two functions 

and 

(3) 

E, = -f(V .F(R) + F2) + I’(R) (4) 

are calculated using a trial solution $T to (1). 
There are several variations of the basic procedure, but for the analysis of the 

leading term of the statistical error they all are equivalent to the following: 

(a) Select a value of time step r (here measured in atomic units) and generate 
a set of A4 random 3N-dimensional conligurations R, each of which specifies the 
coordinates of the N particles of the system under investigation. 

(b) Advance the configurations to their new values 

RY = Ri + rF(R,) + r”‘xi + . . ., i= 1, 2, . . . . M, (5) 

where each xi is a 3N-dimensional random vector with independent components 
drawn from a distribution with zero mean and unit variance. The three dots in (5), 
and from now on, represent higher order terms which may vary between different 
versions of DMC. 

(c) Branching; create a new set of configurations by including 

int[l -t(E,(R,)-E,,)+ ... +u,] (6) 

copies of R;, whem. ui is a random number uniformly distributed over (0, 1). E,, is 
the corresponding iteration average of the local energy, namely, 

Eav = f E,(Ri)IM. (7) 
i= 1 

This provides a single estimate of E(r), the exact eigenvalue of the problem actually 
simulated (which equals E,, in (2) plus a small r-dependent bias introduced by 
having to approximate the corresponding Green function [S, 91). Note that the 
first two terms in brackets of (6) are, within our accuracy, equivalent to the more 
recognizable 

evC -tC(E,(Ri) + EL(RY))P - Eavl >. (8) 

(d) If the resulting number of new configurations differs from M, adjust it to 
exactly M by uniform random deletion or duplication of the same (a necessary 
stabilization of the process). All R” which survive this step are denoted R’. 

(e) Steps (b)-(d) complete one iteration of the simulation procedure. These 
are repeated K times, and the grand-mean, E,,, of the individual iteration averages 
E,, is computed to be used as the overall estimate of E(r). 
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An ultimately unbiased estimate of E, may be obtained by repeating steps 
(ah(e), using several distinct values of T, then extrapolating to z = 0 by means of 
statistical regression. This requires a good understanding of E(r) as a function of t 
(see [7-91). To minimize the standard error of the regression intercept some 
knowledge of the behavior of the oariunce of E,, is required as well. To obtain this 
is a major objective of our paper. 

ERROR ANALYSIS 

The statistical error of E,, is due to two major factors: (a) the variance of the 
individual iteration averages E,, and (b) the strong serial correlation of consecutive 
E,, values. Both of these must be accurately estimated and properly included in 
calculating the error bars. To provide a good mathematical description of their 
r-dependence is the concern of this section. We will assume that the time step is 
sufficiently small, so that only the leading term in each r-expansion of a function of 
z need be considered. The range of applicability of this approximation will be 
illustrated by numerical examples in the following section. 

We know that, after sufficiently many iterations, the set of M configurations 
obtained at the end of each iteration is a random (not independent!) sample from a 
distribution with the pdf equal to f(R; T), where 

cTf(R; t) - Q,f(R; t) = 0, (9) 
9 = -iv* + V . F(R) + E,(R) -E,, (10) 

and OT is an operator in the first and higher order of t [S]. This means that, after 
competing step (b), the set of configurations is distributed according to 

f(R)+(fS*-rVJ(R))f(R)+ ... = [l +r(E,(R)-E,)]f(R) (11) 

(Here, and from now on, our notation suppresses the parametric z-dependence 
inf:) 

Step (c) converts these back into a sample from f(R). For the purpose of our 
analysis, we describe a process which combines steps (c) and (d) (correct only to 
order 7): 

(i) If Ii’, < E,, the “deficient case,” the new configuration, R,;, 
automatically remains a part of the new sample. 

(ii) If E,(R,) > E,, the “excessive case,” RY is kept with the probability of 
1 - T(E,(R~) -E,,). With probability of z(E,(Ri) - E,) configuration R; is replaced 
by a configuration selected from among the “deficient” set, according to discrete 
probabilities proportional to E,, - E,(R,), where j runs over the “deficient” con- 
figurations. This can be seen as sampling from the following distribution: 

f-(R) = mWA E. - &WfW 
R-S (Eo-E,(R))f(R)dR’ 

(12) 
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where the region Rp consists of all “deficient” values of R (those for which 
E,(R) < Ed. 

Now we can compute the serial correlation between E,(R,) and E,(R(), the local 
energies for the ith configuration before and after steps (b)-(d), of which the serial 
correlation of the consecutive E,, values is an immediate consequence. By 
definition, the covariance is given by 

cov(E,(Ri).E,(R:))ESJ‘(E,(R,)-E,)(E,(RI)-E,)g(Ri,R:)rlRidRI, (13) 

where g(R,, R() is the joint distribution (in pdf sense) of Ri and RI (two highly 
correlated random variables). As shown in detail in Appendix A, the covariance is 
given by 

cov(E,(R,), E,(R;)) = var(E,(R))( 1 - ar) + ..., (14) 

where a is a constant (depending only on tiT and V) defined by Eq. (A6). The serial 
correlation coefficient between E,(R,) and E,(R() is thus equal to 

‘p= 1 -uaz+ . . . . (15) 

We may now repeat the above derivation to obtain the serial correlation between 
E,(R,) and E,(Rj2)), the local energy for the ith configuration, two iterations later. 
In the covariance expression (Al) we now have 22 appearing instead of r (as two 
moves have taken place, the probability of being in region R, doubles). Also, to 
within our accuracy, we have a zF(Ri) per iteration in (A2). Finally, the sum of two 
independent random variables of type 2 is equivalent to a single x, with the 
standard deviation of ,/‘?. This introduces a factor of 2 into $V’ of (A2). Thus it is 
easy to see that two consecutive applications of the arguments of Appendix A will 
result in replacing r by 22 in all formulas of that appendix. By extension, the serial 
correlation coefficient between E,(R,) and E,(R!kJ), where Rjk’ is the ith 
configuration, k iterations later, is given by 

kp= 1 -k.m+ . . . . (16) 

Since kp must tend to zero with increasing k, it is more convenient to rewrite (16) 
as 

kp = [exp( --ar + . ..)I” = (‘P)~. (17) 

This would effectively imply that the sequence of E,(R,) values is Markovian. 
However, such a assumption may not be totally adequate for all values of k. Thus, 
in the most general case, one must rewrite (17) using additional terms, as 

‘p=A,[exp(-a,r+ . ..)lk+A2[exp(-u.t+ . ..)I”+ ..., (18) 
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where 

xAi=l, (19) 

1 Aiai=a, (20) 

and a is given in (14). Both (17) and (18) imply exponential decrease and the 
overall convergence of the kp series, which in the former case sums to (ar)- ’ + .. 
and in the latter to z ~ ’ C A,/a, + . . . . 

To simplify some of our arguments we will occasionally assume (17) to be suf- 
ficiently accurate (which is quite often of case), but will make sure that our final 
scheme for estimating the experimental error bars in free of this “Markovian” 
assumption. 

Now, we want to extend these results to the sequence of K iteration averages E,, 
(7). Unfortunately, 

due to intercorrelation of some of the E,(R,) values, as branching (step (c)) results 
in creating duplicate configurations. This implies that (16) does not apply for pa.,; 
we will now find its analog. 

Proceeding parallel to the analysis which lead to (14) and (17) one can show 
that the actual relationship between the variance of an iteration average E,, and the 
variance of an individual E,(R,) value is 

var(E,,) = [var(E,(R))+2C]/M+ .... (22) 

This result is derived in Appendix B, with the constant C defined in (B9). C itself is 
independent of z and arises from branching, which creates strongly correlated pairs 
of E,(R) values (a parallel correlation) to serially propagate through the iterations. 
Thus C, which may be readily estimated, can provide an assessment of the effect of 
branching on the statistical error (see Fig. 1, below). 

Similarly, in Appendix C we show that the covariance of consecutive E,, values is 
given by 

cov(EaV, EI,)=var(E,,)[l -bt] + . . . . (23) 

where b is a constant (depending only on tir and V, but independent of M) given in 
(0). Therefore the first-order serial correlation coefficient between E,, and E!!, 
equals 

‘pa”= 1 -bz+ ... (24) 

and the kth order coefficient (using the Markovian assumption) is 

kPa” = exp( - bkz) (25) 
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FIG. 1. Scaled standard error of various energy estimates (a.u.) versus r (ax.) for H2 ground state: 
block mean, ( IWK)“~ s.e. (&Jr Eq. (33) (0); iteration average of the local energy, W2 s.e. (I?,,)) ( n ); 
local energy, a (E,) ( A ). 

or, more generally, 

k~av = C Bi exp( - b,kr), (26) 

where expressions analogous to (19) and (20) hold for bi and Bi. 
Using (25) the variance of the grand-mean estimate I&, equals 

vWLJ 1 + hv vaP(E,,) =K.7 
l- Pa” 

(27) 

or, to the smallest order of r accuracy 

var”‘(E,,) = [var(E,,)/K] . [2/bz] + ... (28) 

which follows immediately from (24), where the A4 superscript denotes the 
Markovian assumption. 

The more general approach of (26) leads to 

kpav Ii K (29) 
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which, referring to (18), can be expanded as 

(30) 

The last expression may slightly differ from (28) in terms of the actual coefficient, 
but it is identically proportional to r-i. In the next section, we describe a procedure 
for constructing error bars for Egm, which applies regardless of whether (27) is a 
sufficiently accurate approximation to (29) or not. 

In summary, the statistical error of the grand-mean estimate depends on the 
variance of the individual iteration averages (22) and on the serial correlation of 
consecutive E,, values. The former depends predominantly on the quality of the 
guiding function and on C (B9), a component which arises from branching. An 
empirical study of the 5 dependence of these effects, and of the overall grand-mean 
variance, is the subject of the following section. 

EMPIRICAL STUDY 

In this section we illustrate the main points of our paper by an empirical exam- 
ple. We will also describe how to reliably estimate the standard error of E,,. Direct 
use of (29) is not recommended because the normally strong serial correlation of 
the iteration averages gives rise to a long sequence of nonzero serial correlation 
coefficients; due to statistical complications it would be very difficult to reliably 
estimate their infinite sum. Instead, we present a procedure which divides the 
sequence of E,,'s into several blocks of the same size, to produce a relatively 
accurate and simple estimate of the error bar of E,,. We will contrast the results 
obtained from this procedure with those obtained without using blocks and 
assuming that the underlying sequence of E,,'s correspond first to the Markov, and 
then to the Yule models. 

One first performs a run consisting of sulliciently many (several thousand) 
iterations, and the generated set of E,,'s is stored. Next one estimates the serial 
correlation coefficients kpaV. (We used ‘rav to 2ooraV, where kr is the usual estimate 
of kp; see [lo]. Note that all estimates may have a sizable statistical error and be 
negative from a certain order on, due to statistical bias; also, nonrandom-looking 
oscillations may persist throughout the sequence.) If the k,th serial correlation coef- 
ficient is deemed to be practically negligible, divide the sample into Nbk blocks, 
each consisting of k, values of E,,. Then calculate the block averages Ebk,i and 
estimate the variance and the first serial correlation coefficient of this sequence (all 
the higher serial correlations are equal to zero). The mean of the block averages Ebk 
(identical to the grand-mean Eg,) is the ultimate estimate of E(z), where 

Nbk 

Ebk = 1 Et+c,iIN,,. (31) 
i=l 



134 ROTHSTEIN AND VRBIK 

As the following model pertains to the series of block averages: 

I 
Pbk = Pbk, %bk = O, k#O, 1 

the standard error (s.e.) of the grand-mean can be easily estimated by 

si&bk) = (va$bk ) [ 1 + 2pbk l/Nbk > 1’23 

where the variance estimator is given by 

(32) 

(33) 

varGbk) = (Nbk - I)-’ y (&;) - N;L F E 
i= I (;=, bkJ] (34) 

Note that the serial correlation of the blocks, if ignored, leads to an 
underestimation of the standard error. One estimates pbk from the variance and 
covariance of the sample of blocks; the relative error of this estimate of (33) is 
approximately J(6/Nbk). 

This procedure has the advantage of yielding a large number of simply correlated 
blocks of data, and thus it is more efficient and less prone to bias than the techni- 
que of creating significantly fewer huge blocks of data, Nbk, which may be treated 
as statistically independent observations (relative error approximately Jt2/Nb,)). 

It is instructive to estimate the standard error without using blocks by assuming 
that the sequence of E,,‘s conforms to a simple (autoregressive) time series model. 
We tried the first two simplest possibilities: Markov, with one parameter, and Yule 
[lo], with two. Equation (27) holds for the former; for the latter, 

varY(E,,)=var(Eav)(l + ‘~,,)(1-‘4~~,,)~+ 2~,vYC(l - ‘,~,,)(l -2~av)l K (35) 

where Y denotes the Yule assumption. For a related application of these models in 
statistical mechanics, see [ 111. 

The Markov model (in spite of not being totally adequate otherwise) may be 
used to facilitate the determination of k,. When the serial correlation coefficient 
kPav is practically zero (that is, k is sufficiently large) the standard error of our 
estimate is given by [lo]: 

sdkrav) = (C(l + (‘~,,)~)l(l - (‘Pa”)2mw’2. (36) 

This equation provides a rule-of-thumb estimate of the size of the random 
oscillations in the sequence of serial correlation coefficients. A reasonable stopping 
rule based on this is as follows: let k, be the point at which the sequence of kr,v 
values is consistently less than 2.5 times s.e.(kr,,), as given by (36). Another 
generally more conservative but simpler rule is to choose the point at which the 
sequence first becomes negative. (To reach a reasonably small statistical error of the 
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variance estimate, one should always try not to be too conservative and to use as 
small a value of k, as possible; the potential bias of the final estimate is insignificant 
when compared to the statistical error itself. (Any prescription for finding k,, should 
not be applied blindly; we recommend verifying the reasonableness of the final 
choice of k0 by inspection of the ‘r sequence itself.) 

As an empirical example, we generated a sample which consisted of K= 10,000 
iterations on M= 1000 configurations for a wide range of r values using the 
algorithm of [9] applied to HZ. For each iteration the average (E,,) and standard 
error of the EL’s was tabulated. The average standard error over the K iterations 
was then determined (s.e. (EL)). Also, the average of the sample of the E,,‘s (I?,,) 
and its standard error, ignoring the serial correlation, (s.e. (E,,)), were computed. 
Next, the sample was divided in Nblr blocks, each of size k,. Finally, the standard 
error of the mean of the block averages (& = E,,) was computed (s.e. (&)), 
using (33). The standard error results appear in Fig. 1. To faciliate a meaningful 

TABLE I 

Grand Mean Energy and Standard Error for H, Ground State versus Time Step“ 

t Ebkh k,’ 
se. (&Ad 
[x 1031 

se. ‘(Em) 
[x 1031 

se. M(E,)f 
[ x 1031 

0.1 - 1.174(2) 
0.2 - 1.172(2) 
0.3 -1.168(l) 
9.4 -1.164(l) 
0.5 -1.159(l) 
0.6 -1.154(l) 
0.8 -1.145(l) 
1.0 -1.137(l) 

1.90(9) 
1.48(6) 
1.30(6) 
1.14(3) 
1.14(3) 
1.08(3) 
1.01(3) 
0.92(3) 

1.83(6) 
1.45(3) 
1.26(3) 
1.14(3) 
Lll(3) 
1.08(3) 
1.01(3) 
0.92(3) 

Mod& 
Ebk = E, + aT2 + br4 

Eo= -1.1735(9), a = 0.063(5), b = -0.266(5) 

var(&)=a/r+b+cr 
a = 2.46(8) x lo-‘, b = 9.29(3) x lo-‘, c = -3.29(2)x lo-’ 

1.59(4) 
1.30(3) 
1.15(2) 
1.05(2) 
1.03(2) 
0.99(2) 
0.94(2) 
O%(2) 

a All quantities are in atomic units. The estimates are uncertain in the last decimal place quoted; the 
standard error appears in parentheses. 

b Each simulation uses the algorithm of [9] for (K= ) 10,000 iterations on an iniial list of (M= ) 1000 
configurations. The averages and standard errors are for blocks of iteration averages, Eq. (7), each block 
of size k,,. using Eqs. (31 b-(34). .E$xati = - 1.1745a.u. and $r is ti, taken from Cl], with the nuclei 
separation of 1.401 a.u. 

c Block size. 
d Standard error derived from blocking the data; Eq. (33). 
p Standard error derived from the Yule model; square root of Eq. (35). 
‘Standard error derived from the Markov model; square root of Eq. (27). 
g Weighted polynomial regression. 
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comparison of these quantities, we plotted [(MK)“‘s.e. (Ebb)] and 
[M1” s.e. (E,,)], quantities on the same scale as s.e. (EL). The values of E,, and k, 
for each value of z appear in Table I. 

In Fig. 1 the fact that CM’/’ s.e. (E,,)] is consistently larger than s.e. (EL) is due 
to the branching (see discussion of (22)). As expected, this effect clearly becomes 
important as r increases. The consistently larger values for [(MK”’ s.e. (&)] than 
for [Ml/* s.e. (E,,)] are due to the serial correlation of the E,,‘s, which was ignored 
in the latter quantity. Finally, the behavior of [(MK)‘12 s.e. (&)I at small z is 
r-‘12; at large z one sees the effect of higher z order terms in the expression for the 
serial correlation. All this is in accord with (30). The results of a regression lit ver- 
sus r appear in Table I. 

As an illustration of the use of (36) to estimate k,, we display, in Fig. 2, our 
estimates of the first few serial correlation coefficients (T equals 0.2). The cutoff 
value of nine, computed from the formula, yields more blocks (hence better 
precision for the ultimate estimate of the variance) than using the more conser- 
vative cutoff value of seventeen (the first occurrence of a negative correlation coef- 
ficient). The seemingly nonrandom oscillations observed beyond k = 9 are con- 
sistently (allowing for an odd outlier or two) within 2.5 times the standard error of 

k 

FIG. 2. Correlogram obtained from a sample of 10,000 iteration averages for Hz ground state 
generated at T = 0.2 a.u. The dotted lines denote 2.5 times the standard error of the serial correlation 
coeflicients, Eq. (36), at large k. 
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FIG. 3. Scaled standard error of grand mean energy (ax) versus T (ax) for H, ground state: using 
blocks, (MK)‘l* se. (&), Eq. (33) (0 ); using Yule autoregressive model, (IVK)“~ s.e. “(I?,,), Eq. (35) 
( W ); using Markov autoregressive model, (MK)“* s.e. M(E,,), Eq. 27 ( A ). 

‘Y,” given by (36). Such oscillations are both typical and expected; even a com- 
pletely random set of observations will have a correlogram with similar behavior. 
(For example, see Fig. 3.1 in [12].) 

In Fig. 3 we contrast s.e. (Ebk) with the standard error of Z$,, assuming that the 
series of E,,‘s obey the Markov (27) and the Yule (35) models. The Yule value 
provides a consistently good estimate of the standard error for the entire range of r 
values, but even this model will break down for r smaller than 0.1. The Markov 
model consistently underestimates the standard error for our range of r values. 
Thus we cannot recommend using the Markovian assumption in the estimation of 
the serial correlation (such as for the optimization of DMC [7]), although the 
model itself is sufficient to predict the r-’ behavior of the leading term in the 
statistical variance (28). 



138 ROTHSTEIN AND VRBIK 

APPENDIX A: COVARIANCE OF CONSECUTIVE LOCAL ENERGIES 

From Eqs. (12) and (13) 

cov(E,@;), E,(W) 

= JlJ (E,(Ri) - EoNE,(W - EC,) g(R,, RI) d R, d R; 
R- 

+ 
11 

(Et!,(Ri) - E~)(EL,(RI) - Eo)(l- t(E,(Ri) - E,)) g(Riy RI) d Ri d RI 
R+ 

+ R +jj (E,(Ri) - E,,)(E,(R;) - Eo) t(E,(R,) - E,,) g-(R,, R:) dR, dR; 

+ . . ., (Al 1 

where R + is the region of the “excessive” R values (the complement of R _ ), and the 
R’ integrals are over all space. The third term (with pdf g-(R,, RI)) represents the 
covariance between the local energy evaluated at Ri, a configuration in the present 
iteration which has been deleted for the next iteration, and the local energy 
evaluated at R(, a configuration which has been duplicated. 

Substitute RP of (5) for R( in the first two terms of (Al). Now, the joint dis- 
tribution g(R,, RI) dR, dRi becomes f(Ri) h(xi) dR, &, where h is the (usually 
normal) standardized distribution of independent components. Furthermore, from 
(5) it follows that 

J EL(RY) h(Xi) dxi=j {E,(Ri) + (zF(Ri) + Z”*Xi) .VE,(Ri) 

+~C(~F(R)+~“*X~)*V]*EL(R~) + ...} II dxi 

=E,(Ri) + TF(Ri) . VE,(R,) + ;@E,(R~) + . . . 642) 

Substituting (A2) into (Al) yields 

= s [(E,(R) -Ed* + (E,(R) - 4,) +‘(R). VE,(R) 
+id&(R)-Eo)V2&(R)]f(R)dR+~ ~(E,(R)-E,,)~~(R)~R 

R+ 

+Z s (E,(R)-E,)*(E,(Rf)-E,,)g-(Ri,R;)dRdR’+ . . . . 043) 
R+ 
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From Green formulas and from (2) 

s C(E,(R) -Ed* + (E,(R) - 4) WR). VE,(R) + W,(R) - 6,) V*&(R) 

- $z(E,(R) - &I)~I f(R) dR 

= (E,(R)-E,)*(l -4rV .F(R)+@‘*-+t(E,(R)-E,))f(R)dR 
I 

- ;T I [VE,(R)]2f(R) dR 

= j (EAR) - W*fW dR - TV f CV&UW2fW dR. (A4) 

The operator range of V is restricted to within the square brackets in (A3) and 
(A4). 

Upon substitution of (A4) into (A3) 

coW,(W, E,(W) 

-T I (E,(R)-E,)*(E,-E,(R’))g-(R,R’)dRdR’ 
RI 

- +T [VE,(R)]*f(R) dR 
I 

+ . . . . (A51 

The first factor is the variance of E,(R). Now (14) follows immediately from this 
upon defining the following constant 

a = var(E,(R))-’ IWW,13NW+;j CVE,(R)12f(R)dR 

+R+~(E,(R)-E,))2(Eo-E,(R’))g~(R,R’)dRdR’ (‘46) 

APPENDIX B: DERIVATION OF var(E,,) 

From our description of steps (c) and (d) above (12), to the first order accuracy 
in r, the expected number of duplicate pairs created in one iteration is equal to 

MT f (Eo- E,(R))f(R) d R. W) 
R- 
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A pair of originally identical values of E,(R,) has one iteration later a covariance 
equal to 

cov - (EAR:, 1, E,(W) 

’ = 
J.i 

(EL(RiI) - E’)(E,(R:,) -E’) g’(R;,, R;J dR;, dR:, (B2) 

where Rl, and Ri2 represent the two values of a duplicate configuration gone 
through one complete iteration (steps (b)-(d)). In (B2) g’ is the joint distribution 
function of RI, and Ri2, E’ is the expected value of EL(R:,) (equal to that of 
E,(R:,)), and the prime superscript implies averaging with respect to g’. These con- 
figurations were created in step (c) by duplicating Ri, a member of the set of 
“deficient configurations.” Furthermore, for each R:, and Ri2 we use independent xi, 
and xi2: 

R;, = Ri + rF(Ri) + t”‘~~, (B3) 
and the analog for Ri2. Thus g’(R:,, Ri2) d R:, d Ri2 is equivalent to 
f -(Ri) h(Xii) h(Xi2) d Ri &,, dXi2, where f - is the distribution of deficient con- 
figurations (12) from which the parent configuration Ri was drawn. (B2) is now 
equal to 
cov - (EAK 1, E,(W) 

= N (',(R:,)-E',)(',(R:,)-E',)f-(Ri)h(~il)h(~iz)dRid~il dxiz. (B4) 

We may now integrate over xi, and xi2 as in (A2). 
When calculating the corresponding variance of EL(RI1) and E,(R;,), we obtain 

varr(E,(R,!)) = j/ (E,(Ri)-Q2f-(Ri) h(Q dRidXi. VW 

The expressions for cov - and var are thus identical except for the integral of the 
cross term involving xi1xi2 and I’, respectively, which integrates to zero in the 
covariance case but contributes to the variance. Thus we get 

cov- (Ed%), E,(W) 

var-(E,(Rj))-r[(VE,(Ri))2fp(Ri)dRi+ . . . . VW 

Finally [by the argument leading to (16) and (17)] the correlation for a 
duplicate configuration, k iterations later, is given by (suppressing the index i): 

*p-={exp[-r/ (VEAR))*f-(R) dR/var-(EAR’)) I> kz (exp[ -cr]}k. 037) 

The cumulative amount of covariance contributed by a single duplicate pair to 
the overall sum (M configurations advanced through K iterations) equals 

var-(E,(R’)). [l+ ‘p- + ‘p- + 3p- + .-.I wvar-(E,(R’))/(cr), (B8) 
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where ‘p - is the first-order serial correlation coefficient from (B7). Equations (B7) 
and the right-hand side of (B8) rest on the Markovian assumption (the t- ’ 
behavior is general). The total amount of covariance introduced by all duplicates 
throughout K iterations is thus equal to K. (Bl ) . (B8). Therefore in a single- 
iteration (divide by K) this contributes to the variance of xi= i E,(R,) an additional 
factor of 2. (Bl). (B8). Finally, dividing by M2 gives the contribution to the 
variance of E,,. This results in the extra 2C/A4 of (22), where C is equal to 

CE 
I 

(Eo- E,(R))f(R) dR.var-(E,(R’)/c+ .... (B9) 
R- 

APPENDIX C: COVARIANCEOF E,, 

The variance of CE 1 E,(R,), namely, 

fI, (EL(Ri) -Eo). f (E,(Rj) - E,) , 
j=l 1 (Cl) 

where d denotes the expected value with respect to the joint distribution of all M 
configurations, must remain the same throughout the iterations, once the stationary 
stage of the simulation has been reached. This means that (Cl) is equal to 

8 ig, (E,(K)-&)~ f b%R;)-Ed 
[ j=l 1 . (C2) 

From the equality of (Cl) and (C2) and after using (A2) [note that the terms of 
the type t’j2xi. VE,(R,) do contribute when i = j], one can prove that 

2' f (F(Ri).VE,(Ri)+iV2E,(Ri)). f (E,,(R~)-E~)] 
C i=l j= 1 

1 . (C3) 

From this equation it further follows that 

&’ f, (EAR3 - Ed. f (E,(R,) - E,) 
j=l 1 

iFl (E,(Ri)eE~Jej~l (&(Rj)-Eo) 1 [ +d z f (F(R,)-VE,(R,) 
i=l 

++V2E,(Ri)). f (E,(R,)-E,) + . . . 
j=l 1 

=Var(~~E,(R,))--fr~[~~(VE,(R,,,']+ .... (C4) 
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Now (23) follows immediately upon defining the constant: 

b =A 1 (VE,(Ri))2f(R) dR/[M.var(E,,)]. (C5) 
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